skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Juarez, Gabriel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Small—but finite—fluid inertia can be leveraged to generate steady flows out of liquid vibrations around an immersed interface. In engineering, external high-frequency drivers ( 10 2 10 5 Hz ) allow this inertial rectification phenomenon, known as viscous streaming, to be employed in micron-scale devices for precise flow control, particle manipulation, and spatially controlled chemistry. However, beyond artificial settings, streaming has been hypothesized to be accessible by larger-scale biological systems pertaining to lower frequencies. Then millimeter-size organisms that oscillate or pulsate cilia and appendages in the 1 to 10 Hz range may be able to rectify surrounding flows, for feeding or locomotion, removing the need for external actuators, tethers, or tubing. Motivated by this potential for bio-hybrid robotic applications and biophysical exploration, here we demonstrate an living system able to produce streaming flows endogenously, autonomously, and unassisted. Computationally informed, our biological device generates oscillatory flows through the cyclic contractions of an engineered muscle tissue, shaped in the form of a torus and suspended in fluid within a microparticle image velocimetry setup. Flow patterns consistent with streaming simulations are observed for low-frequency muscle contractions ( 2 4 Hz ) , either spontaneous or light-induced, illustrating system autonomy and controllability, respectively. Thus, by connecting tissue engineering with hydrodynamics, this work provides experimental evidence of biologically powered streaming in untethered, millimeter-scale living systems, endowing bio-hybrid technology with inertial microfluidic capabilities. It also illustrates the potential of combining bio-hybrid platforms and simulations to advance both biophysical understanding and fluid mechanics. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Reef-building crustose coralline algae (CCA) are known to facilitate the settlement and metamorphosis of scleractinian coral larvae. In recent decades, CCA coverage has fallen globally and degrading environmental conditions continue to reduce coral survivorship, spurring new restoration interventions to rebuild coral reef health. In this study, naturally produced chemical compounds (metabolites) were collected from two pantropical CCA genera to isolate and classify those that induce coral settlement. In experiments using four ecologically important Caribbean coral species, we demonstrate the applicability of extracted, CCA-derived metabolites to improve larval settlement success in coral breeding and restoration efforts. Tissue-associated CCA metabolites induced settlement of one coral species,Orbicella faveolata, while metabolites exuded by CCA (exometabolites) induced settlement of three species:Acropora palmata,Colpophyllia natansandOrbicella faveolata. In a follow-up experiment, CCA exometabolites fractionated and preserved using two different extraction resins induced the same level of larval settlement as the unfractionated positive control exometabolites. The fractionated CCA exometabolite pools were characterized using liquid chromatography tandem mass spectrometry, yielding 145 distinct molecular subnetworks that were statistically defined as CCA-derived and could be classified into 10 broad chemical classes. Identifying these compounds can reveal their natural prevalence in coral reef habitats and facilitate the development of new applications to enhance larval settlement and the survival of coral juveniles. 
    more » « less
  3. Viscous streaming refers to the rectified, steady flows that emerge when a liquid oscillates around an immersed microfeature. Relevant to microfluidics, the resulting local, strong inertial effects allow manipulation of fluid and particles effectively, within short time scales and compact footprints. Nonetheless, practically, viscous streaming has been stymied by a narrow set of achievable flow topologies, limiting scope and application. Here, by moving away from classically employed microfeatures of uniform curvature, we experimentally show how multicurvature designs, computationally obtained, give rise, instead, to rich flow repertoires. The potential utility of these flows is then illustrated in compact, robust, and tunable devices for enhanced manipulation, filtering, and separation of both synthetic and biological particles. Overall, our mixed computational/experimental approach expands the scope of viscous streaming application, with opportunities in manufacturing, environment, health, and medicine, from particle self-assembly to microplastics removal. 
    more » « less
  4. Fujimura, Atsushi (Ed.)
    Larval settlement in wave-dominated, nearshore environments is the most critical life stage for a vast array of marine invertebrates, yet it is poorly understood and virtually impossible to observe in situ . Using a custom-built flume tank that mimics the oscillatory fluid flow over a shallow coral reef, we isolated the effect of millimeter-scale benthic topography and showed that it increases the settlement of slow-swimming coral larvae by an order of magnitude relative to flat substrates. Particle tracking velocimetry of flow fields revealed that millimeter-scale ridges introduced regions of flow recirculation that redirected larvae toward the substrate surface and decreased the local fluid speed, effectively increasing the window of time for larvae to settle. Regions of recirculation were quantified using the Q -criterion method of vortex identification and correlated with the settlement locations of larvae for the first time. In agreement with experiments, computational fluid dynamics modeling and agent-based larval simulations also showed significantly higher settlement onto ridged substrates. Additionally, in contrast to previous reports on the effect of micro-scale substrate topography, we found that these topographies did not produce key hydrodynamic features linked to increased settlement. These findings highlight how physics-based substrate design can create new opportunities to increase larval recruitment for ecosystem restoration. 
    more » « less